See more posts like this on Tumblr

#nasa #space #science #planets #astronomy #explore #universe #stars #galaxies #JWST #webb #james webb space telescope #explained #WebbAT #unfold the universe

More you might like

The Science Goals of the James Webb Space Telescope

Our James Webb Space Telescope is an epic mission that will give us a window into the early universe, allowing us to see the time period during which the first stars and galaxies formed. Webb will not only change what we know, but also how we think about the night sky and our place in the cosmos. Want to learn more? Join two of our scientists as they talk about what the James Webb Telescope is, why it is being built and what it will help us learn about the universe…


First, meet Dr. Amber Straughn. She grew up in a small farming town in Arkansas, where her fascination with astronomy began under beautifully dark, rural skies. After finishing a PhD in Physics, she came to NASA Goddard to study galaxies using data from our Hubble Space Telescope. In addition to research, Amber’s role with the Webb project’s science team involves working with Communications and Outreach activities. She is looking forward to using data from Webb in her research on galaxy formation and evolution.


We also talked with Dr. John Mather, the Senior Project Scientist for Webb, who leads our science team. He won a Nobel Prize in 2006 for confirming the Big Bang theory with extreme precision via a mission called the Cosmic Background Explorer (COBE) mission. John was the Principal Investigator (PI) of the Far IR Absolute Spectrophotometer (FIRAS) instrument on COBE.  He’s an expert on cosmology, and infrared astronomy and instrumentation. 

Now, let’s get to the science of Webb!

Dr. Amber Straughn: The James Webb Space Telescope at its core is designed to answer some of the biggest questions we have in astronomy today. And these are questions that go beyond just being science questions; they are questions that really get to the heart of who we are as human beings; questions like where do we come from? How did we get here? And, of course, the big one – are we alone?

To answer the biggest questions in astronomy today we really need a very big telescope. And the James Webb Space Telescope is the biggest telescope we’ve ever attempted to send into space. It sets us up with some really big engineering challenges.


Dr. John Mather: One of the wonderful challenges about astronomy is that we have to imagine something so we can go look for it. But nature has a way of being even more creative than we are, so we have always been surprised by what we see in the sky. That’s why building a telescope has always been interesting. Every time we build a better one, we see something we never imagined was out there. That’s been going on for centuries. This is the next step in that great series, of bigger and better and more powerful telescopes that surely will surprise us in some way that I can’t tell you.


It has never been done before, building a big telescope that will unfold in space. We knew we needed something that was bigger than the rocket to achieve the scientific discoveries that we wanted to make. We had to invent a new way to make the mirrors, a way to focus it out in outer space, several new kinds of infrared detectors, and we had to invent the big unfolding umbrella we call the sunshield.


Amber: One of Webb’s goals is to detect the very first stars and galaxies that were born in the very early universe. This is a part of the universe that we haven’t seen at all yet. We don’t know what’s there, so the telescope in a sense is going to open up this brand-new part of the universe, the part of the universe that got everything started.


John: The first stars and galaxies are really the big mystery for us. We don’t know how that happened. We don’t know when it happened. We don’t know what those stars were like. We have a pretty good idea that they were very much larger than the sun and that they would burn out in a tremendous burst of glory in just a few million years.


Amber: We also want to watch how galaxies grow and change over time. We have questions like how galaxies merge, how black holes form and how gas inflows and outflows affect galaxy evolution. But we’re really missing a key piece of the puzzle, which is how galaxies got their start.


John: Astronomy is one of the most observationally based sciences we’ve ever had. Everything we know about the sky has been a surprise. The ancients knew about the stars, but they didn’t know they were far away. They didn’t know they were like the Sun. Eventually we found that our own galaxy is one of hundreds of billions of galaxies and that the Universe is actually very old, but not infinitely old. So that was a big surprise too. Einstein thought, of course the Universe must have an infinite age, without a starting point. Well, he was wrong! Our intuition has just been wrong almost all the time. We’re pretty confident that we don’t know what we’re going to find.


Amber: As an astronomer one of the most exciting things about working on a telescope like this is the prospect of what it will tell us that we haven’t even thought of yet. We have all these really detailed science questions that we’ll ask, that we know to ask, and that we’ll answer. And in a sense that is what science is all about… in answering the questions we come up with more questions. There’s this almost infinite supply of questions, of things that we have to learn. So that’s why we build telescopes to get to this fundamental part of who we are as human beings. We’re explorers, and we want to learn about what our Universe is like. 


Webb will be the world’s premier space science observatory. It will solve mysteries in our solar system, look beyond to distant worlds around other stars and probe the mysterious structures and origins of our universe – including our place in it. Webb is an international project we’re leading with our partners, ESA (European Space Agency) and the Canadian Space Agency.

To learn more about our James Webb Space Telescope, visit the website, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space:

NASA space science space telescope JWST James Webb Space Telescope galaxies stars astronomy star gazing planets black holes


The James Webb Space Telescope is launching on December 22, 2021. Webb’s revolutionary technology will explore every phase of cosmic history—from within our solar system to the most distant observable galaxies in the early universe, to everything in between. Postdoctoral Research Associate Naomi Rowe-Gurney will be taking your questions about Webb and Webb science in an Answer Time session on Tuesday, December 14 from noon to 1 p.m EST here on our Tumblr!

🚨 Ask your questions now by visiting

Dr. Naomi Rowe-Gurney recently completed her PhD at the University of Leicester and is now working at NASA Goddard Space Flight Center as a postdoc through Howard University. As a planetary scientist for the James Webb Space Telescope, she’s an expert on the atmospheres of the ice giants in our solar system — Uranus and Neptune — and how the Webb telescope will be able to learn more about them.


The James Webb Space Telescope – fun facts:

  • Webb is so big it has to fold origami-style to fit into its rocket and will unfold like a “Transformer” in space.
  • Webb is about 100 times more powerful than the Hubble Space Telescope and designed to see the infrared, a region Hubble can only peek at.
  • With unprecedented sensitivity, it will peer back in time over 13.5 billion years to see the first galaxies born after the Big Bang––a part of space we’ve never seen.
  • It will study galaxies near and far, young and old, to understand how they evolve.
  • Webb will explore distant worlds and study the atmospheres of planets orbiting other stars, known as exoplanets, searching for chemical fingerprints of possible habitability.

Make sure to follow us on Tumblr for your regular dose of space!

James Webb Space Telescope NASA space science Webb stars astronomy solar system exoplanets technology studyblr photographers on Tumblr photography universe cosmos galaxies planets explore WebbAT answertime

How Do Space Telescopes Break Down Light?

Space telescopes like Hubble and our upcoming James Webb Space Telescope use light not only to create images, but can also break light down into individual colors (or wavelengths). Studying light this way can give us a lot of detail about the object that emitted that light.  For example, studying the components of the light from exoplanets can tell us about its atmosphere’s color, chemical makeup, and temperature. How does this work?

Remember the primary colors you learned about in elementary school?

Those colors are known as the pigment or subtractive colors. Every other color is some combination of the primary colors: red, yellow, and blue.


Light also has its own primary colors, and they work in a similar way. These colors are known as additive or light colors.          


TVs make use of light’s colors to create the pictures we see. Each pixel of a TV screen contains some amount of red, green and blue light. The amount of each light determines the overall color of the pixel. So, each color on the TV comes from a combination of the primary colors of light: red, green and blue.


Space telescope images of celestial objects are also a combination of the colors of light.


Every pixel that is collected can be broken down into its base colors. To learn even more, astronomers break the red, green and blue light down into even smaller sections called wavelengths.

This breakdown is called a spectrum.


With the right technology, every pixel of light can also be measured as a spectrum.


Images show us the big picture, while a spectrum reveals finer details.  Astronomers use spectra to learn things like what molecules are in planet atmospheres and distant galaxies.


An Integral Field Unit, or IFU, is a special tool on the James Webb Space Telescope that captures images and spectra at the same time.


The IFU creates a unique spectrum for each pixel of the image the telescope is capturing, providing scientists with an enormous amount of valuable, detailed data. So, with an IFU we can get an image, many spectra and a better understanding of our universe.

Watch the full video where this method of learning about planetary atmospheres is explained:

The James Webb Space Telescope is our upcoming infrared space observatory, which will launch in 2021. It will spy the first galaxies that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born and tell us about potentially habitable planets around other stars.

To learn more about NASA’s James Webb Space Telescope, visit the website, or follow the mission on Facebook, Twitter and Instagram.

Text and graphics credit: Space Telescope Science Institute

Make sure to follow us on Tumblr for your regular dose of space:  

NASA Space science how does it work space telescopes roygbv space technology light planets stars galaxies james webb space telescope hubble space telescope

That’s a wrap! Thank you for all the wonderful questions. James Webb Space Telescope Planetary Scientist Dr. Naomi Rowe-Gurney answered questions about the science goals, capabilities, and her hopes for the world’s most powerful telescope.

Check out her full Answer Time for more: Career | Science Goals | Capabilities

We hope you enjoyed today and learned something new about the Webb mission! Don’t miss the historic launch of this first-of-its kind space observatory. Tune in to NASA TV HERE on Dec. 22 starting at 7:20 a.m. EST (12:20 UTC).

If today’s Answer Time got you excited, explore all the ways you can engage with the mission before launch! Join our #UnfoldTheUniverse art challenge, our virtual social event with international space agencies, and countdown to liftoff with us. Check out all the ways to participate HERE.

Make sure to follow us on Tumblr for your regular dose of space!

nasa space science planets astronomy jwst webb james webb space telescope answertime WebbAT explore unfold the universe solar system universe research technology stars planet

Decoding Nebulae

We can agree that nebulae are some of the most majestic-looking objects in the universe. But what are they exactly? Nebulae are giant clouds of gas and dust in space. They’re commonly associated with two parts of the life cycle of stars: First, they can be nurseries forming new baby stars. Second, expanding clouds of gas and dust can mark where stars have died.


Not all nebulae are alike, and their different appearances tell us what’s happening around them. Since not all nebulae emit light of their own, there are different ways that the clouds of gas and dust reveal themselves. Some nebulae scatter the light of stars hiding in or near them. These are called reflection nebulae and are a bit like seeing a street lamp illuminate the fog around it.


In another type, called emission nebulae, stars heat up the clouds of gas, whose chemicals respond by glowing in different colors. Think of it like a neon sign hanging in a shop window!


Finally there are nebulae with dust so thick that we’re unable to see the visible light from young stars shine through it. These are called dark nebulae.


Our missions help us see nebulae and identify the different elements that oftentimes light them up.

The Hubble Space Telescope is able to observe the cosmos in multiple wavelengths of light, ranging from ultraviolet, visible, and near-infrared. Hubble peered at the iconic Eagle Nebula in visible and infrared light, revealing these grand spires of dust and countless stars within and around them.


The Chandra X-ray Observatory studies the universe in X-ray light! The spacecraft is helping scientists see features within nebulae that might otherwise be hidden by gas and dust when viewed in longer wavelengths like visible and infrared light. In the Crab Nebula, Chandra sees high-energy X-rays from a pulsar (a type of rapidly spinning neutron star, which is the crushed, city-sized core of a star that exploded as a supernova).


The James Webb Space Telescope will primarily observe the infrared universe. With Webb, scientists will peer deep into clouds of dust and gas to study how stars and planetary systems form.


The Spitzer Space Telescope studied the cosmos for over 16 years before retiring in 2020. With the help of its detectors, Spitzer revealed unknown materials hiding in nebulae — like oddly-shaped molecules and soot-like materials, which were found in the California Nebula.


Studying nebulae helps scientists understand the life cycle of stars. Did you know our Sun got its start in a stellar nursery? Over 4.5 billion years ago, some gas and dust in a nebula clumped together due to gravity, and a baby Sun was born. The process to form a baby star itself can take a million years or more!


After billions more years, our Sun will eventually puff into a huge red giant star before leaving behind a beautiful planetary nebula (so-called because astronomers looking through early telescopes thought they resembled planets), along with a small, dense object called a white dwarf that will cool down very slowly. In fact, we don’t think the universe is old enough yet for any white dwarfs to have cooled down completely.

Since the Sun will live so much longer than us, scientists can’t observe its whole life cycle directly … but they can study tons of other stars and nebulae at different phases of their lives and draw conclusions about where our Sun came from and where it’s headed. While studying nebulae, we’re seeing the past, present, and future of our Sun and trillions of others like it in the cosmos.


To keep up with the most recent cosmic news, follow NASA Universe on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space.

NASA space science nebulas space telescope hubble space telescope JWST chandra x ray observatory universe space facts cosmos stars spitzer space telescope james webb space telescope

5 Out-of-This World Technologies Developed for Our Webb Space Telescope

Our James Webb Space Telescope is the most ambitious and complex space science observatory ever built. It will study every phase in the history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.


In order to carry out such a daring mission, many innovative and powerful new technologies were developed specifically to enable Webb to achieve its primary mission.  

Here are 5 technologies that were developed to help Webb push the boundaries of space exploration and discovery:

1. Microshutters


Microshutters are basically tiny windows with shutters that each measure 100 by 200 microns, or about the size of a bundle of only a few human hairs. 

The microshutter device will record the spectra of light from distant objects (spectroscopy is simply the science of measuring the intensity of light at different wavelengths. The graphical representations of these measurements are called spectra.)


Other spectroscopic instruments have flown in space before but none have had the capability to enable high-resolution observation of up to 100 objects simultaneously, which means much more scientific investigating can get done in less time. 

Read more about how the microshutters work HERE.

2. The Backplane


Webb’s backplane is the large structure that holds and supports the big hexagonal mirrors of the telescope, you can think of it as the telescope’s “spine”. The backplane has an important job as it must carry not only the 6.5 m (over 21 foot) diameter primary mirror plus other telescope optics, but also the entire module of scientific instruments. It also needs to be essentially motionless while the mirrors move to see far into deep space. All told, the backplane carries more than 2400kg (2.5 tons) of hardware.


This structure is also designed to provide unprecedented thermal stability performance at temperatures colder than -400°F (-240°C). At these temperatures, the backplane was engineered to be steady down to 32 nanometers, which is 1/10,000 the diameter of a human hair!

Read more about the backplane HERE.

3. The Mirrors


One of the Webb Space Telescope’s science goals is to look back through time to when galaxies were first forming. Webb will do this by observing galaxies that are very distant, at over 13 billion light years away from us. To see such far-off and faint objects, Webb needs a large mirror. 

Webb’s scientists and engineers determined that a primary mirror 6.5 meters across is what was needed to measure the light from these distant galaxies. Building a mirror this large is challenging, even for use on the ground. Plus, a mirror this large has never been launched into space before! 


If the Hubble Space Telescope’s 2.4-meter mirror were scaled to be large enough for Webb, it would be too heavy to launch into orbit. The Webb team had to find new ways to build the mirror so that it would be light enough – only 1/10 of the mass of Hubble’s mirror per unit area – yet very strong. 

Read more about how we designed and created Webb’s unique mirrors HERE.

4. Wavefront Sensing and Control


Wavefront sensing and control is a technical term used to describe the subsystem that was required to sense and correct any errors in the telescope’s optics. This is especially necessary because all 18 segments have to work together as a single giant mirror.

The work performed on the telescope optics resulted in a NASA tech spinoff for diagnosing eye conditions and accurate mapping of the eye.  This spinoff supports research in cataracts, keratoconus (an eye condition that causes reduced vision), and eye movement – and improvements in the LASIK procedure.

Read more about the tech spinoff HERE

5. Sunshield and Sunshield Coating


Webb’s primary science comes from infrared light, which is essentially heat energy. To detect the extremely faint heat signals of astronomical objects that are incredibly far away, the telescope itself has to be very cold and stable. This means we not only have to protect Webb from external sources of light and heat (like the Sun and the Earth), but we also have to make all the telescope elements very cold so they don’t emit their own heat energy that could swamp the sensitive instruments. The temperature also must be kept constant so that materials aren’t shrinking and expanding, which would throw off the precise alignment of the optics.


Each of the five layers of the sunshield is incredibly thin. Despite the thin layers, they will keep the cold side of the telescope at around -400°F (-240°C), while the Sun-facing side will be 185°F (85°C). This means you could actually freeze nitrogen on the cold side (not just liquify it), and almost boil water on the hot side. The sunshield gives the telescope the equivalent protection of a sunscreen with SPF 1 million!

Read more about Webb’s incredible sunshield HERE

Learn more about the Webb Space Telescope and other complex technologies that have been created for the first time by visiting THIS page.

For the latest updates and news on the Webb Space Telescope, follow the mission on Twitter, Facebook and Instagram.

Make sure to follow us on Tumblr for your regular dose of space:

nasa space webb james webb space telescope infrared universe solar system technology first develop explore cosmos observatory jwst science

#TBT to 1989 when Voyager 2 spotted Uranus looking like a seemingly perfect robin’s egg. 💙⁣ ⁣ When our Voyager 2 spacecraft flew by it in this image, one pole was pointing directly at the Sun. This means that no matter how much it spins, one half is...

#TBT to 1989 when Voyager 2 spotted Uranus looking like a seemingly perfect robin’s egg. 💙⁣ ⁣

When our Voyager 2 spacecraft flew by it in this image, one pole was pointing directly at the Sun. This means that no matter how much it spins, one half is completely in the sun at all times, and the other half is in total darkness.. ⁣ ⁣

Far-flung, Uranus – an ice giant of our solar system – is as mysterious as it is distant. Soon after its launch in 2021, our James Webb Space Telescope will change that by unlocking secrets of its atmosphere. ⁣ ⁣

Image Credit: NASA/JPL-Caltech⁣ ⁣

Make sure to follow us on Tumblr for your regular dose of space:

NASA space science Uranus solar system planets beautiful flawless space pictures perfect Voyager James Webb Space Telescope jwst

Who’s ready to #UnfoldTheUniverse? The James Webb Space Telescope Answer Time with expert Dr. Naomi Rowe-Gurney is LIVE! Stay tuned for talks about the science goals, capabilities, and hopes for the world’s most powerful telescope. View ALL the answers HERE.

Make sure to follow us on Tumblr for your regular dose of space!

nasa space science jwst webb james webb space telescope answertime WebbAT universe explore astronomy planets unfold the universe solar system technology research planet women in stem


Ever wanted to look back in time? This week, we’re launching a kind of time machine – a telescope so powerful it will help us see back some of the first stars and galaxies made after the Big Bang.

The James Webb Space Telescope is the largest and most advanced telescope we’ve ever put in space. With revolutionary technology, it will study 13.5 billion years of cosmic history and help humanity understand our place in the stars.

Tomorrow, Dec. 25, at 7:20 a.m. ET (12:20 UTC), the Webb Telescope is set to launch from French Guiana, beginning a 29-day journey to a spot a million miles away.

In English:

In Spanish:

Once Webb launches, the journey has only just begun. The telescope will begin a 2-week-long process of unfolding itself in space before settling in to explore the universe in ways we’ve never seen before.

Follow along on Twitter, Facebook and Instagram and with #UnfoldTheUniverse.

NASA space science explore universe cosmos space exploration astronomy photographers on tumblr solar system technology history James Webb Space Telescope JWST unfoldtheuniverse Youtube

A View into the Past


Our Hubble Space Telescope just found the farthest individual star ever seen to date!

Nicknamed “Earendel” (“morning star” in Old English), this star existed within the first billion years after the universe’s birth in the big bang. Earendel is so far away from Earth that its light has taken 12.9 billion years to reach us, far eclipsing the previous single-star record holder whose light took 9 billion years to reach us.

Though Earendel is at least 50 times the mass of our Sun and millions of times as bright, we’d normally be unable to see it from Earth. However, the mass of a huge galaxy cluster between us and Earendel has created a powerful natural magnifying glass. Astronomers expect that the star will be highly magnified for years.

Earendel will be observed by NASA’s James Webb Space Telescope. Webb’s high sensitivity to infrared light is needed to learn more about this star, because its light is stretched to longer infrared wavelengths due to the universe’s expansion.

NASA Hubble stars James Webb Space Telescope JWST astronomy


Leave a Reply